Оксид галлия - полупроводник со сверхширокой запрещенной зоной

06.01.2019 11:43:51

Исследователи оксида галлия прочат материалу высокую востребованность в современной микроэлектронике.

В микроэлектронных устройствах так называемая запрещенная зона это основной фактор, который определяет электрическую проводимость материала. Новые классы полупроводников с ультраширокой запрещенной зоной (UWB) способны работать при гораздо более высоких температурах и мощностях, нежели чем обычные микросхемы, выполненные на основе материалов на основе кремния, материала с малыми запрещенными зонами. Исследователи из США и Кореи предоставили описание свойств, возможностей, существующих ограничениях и направлениях будущего развития для одного из наиболее перспективных UWB-компаундов - оксида галлия.

Вещества с большими запрещенными зонами, как правило, являются изоляторами, плохо проводящими электричество. Вещества с более узкими зонами - полупроводниками. Современный класс полупроводников со сверхширокими запрещенными зонами способен работать при намного больших высоких скоростях, нежели чем обычные микросхемы с малыми зонами на основе кремния, или чипы на основе карбида силикона (SiC) и нитрида галлия (GaN).

В Журнале прикладной физики (AIP Publishing) исследователи из Университета Флориды, Военно-морской исследовательской лаборатории США и Корейского университета подробно рассказывают о свойствах, возможностях, текущих ограничениях и будущих разработках для одного из наиболее перспективных UWB-соединений, оксида галлия ( Ga2O3).

Оксид галлия отличает чрезвычайно широкая запрещенная зона в 4.8 эВ, что больше чем у кремния с его 1.1 эВ и 3.3 эВ у SiC и GaN. Это различие обеспечивает возможность для чипов на основе Ga2O3 выдерживать более высокую напряженность электрического поля, нежели чем традиционные и другие современные полупроводниковые материалы. Кроме того, Ga2O3 способен при равной толщине слоя выдерживать без пробоя более высокое напряжение. Эти два свойства могут сделать его незаменимым материалов для производства миниатюрных и эффективных силовых транзисторов.

Оксид галлия - это великолепный материал для создания подложек при производстве полупроводниковых чипов. Соединение может найти использование в системах распределения мощности, которые используются в станциях для заряда аккумуляторов электромобилей или в конверторах, которые обеспечивают преобразование электроэнергии, поступающей в энергосеть от альтернативных источников энергии, таких как ветроэлектрогенераторы.

Исследователи также рассматривают оксид галлия в качестве материала для производства полевых транзисторов по технологии металл-оксид-полупроводник, известной как MOSFET. Традиционно для их создания использовался кремний, но для более мощных устройств, например, зарядных станций для электромобилей, требуются полевые МОП-транзисторы, способные работать с большими мощностями, - для этого не получается использовать кремний, но подойдет новый материал.

Чтобы научиться делать усовершенствованные MOSFET, требуется улучшить диэлектрические свойства элементов затвора, а также системы управления температурой с тем, чтобы можно было более эффективно отводить тепло от устройств. По-мнению руководителя исследовательской группы, оксид галлия не сможет заменить SiC или GaN в качестве основного полупроводникового материала, который придет на смену кремнию, но новый материал сможет сыграть свою роль в расширении диапазона доступной мощности и напряжения различных системах, для которых принципиально важна широкая запрещенная зона материала.

Среди наиболее перспективных областей применения материала исследователи выделяют его использование при создании высоковольтных выпрямителей, систем кондиционирования и распределения электроэнергии, таких как зарядные системы электромобилей, фотоэлектрические солнечные преобразователи, ветроэлектрогенераторы и так далее.

Источник: publishing.aip.org.

За новостями микроэлектроники и полупроводников удобно следить в телеграм-канале RUSmicro


0
5 наград
0 Ƶ
Отобразить форму комментирования
Комментарии